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ON THE NUMERICAL COMPUTATION OF LAMINAR 

LIQUID INTERFACE 
BOUNDARY LAYERS AT A PHASE-CHANGING, GAS- 
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SUMMARY 
The two-dimensional, laminar boundary-layer equations of heat, mass and momentum at a smooth, phase- 
changing, gas-liquid interface are solved numerically by the Keller Box method. The gas and liquid regimes 
are embedded in a single marching scheme which computes interfacial parameters implicitly. Results of 
both self-similar and non-similar boundary-layer computations are presented and effects of mild pressure 
gradient, a mean current in the liquid, and free-stream vapour concentration on the interfacial parameters 
are analysed. 

In order to assess the accuracy of the method, several self-similar problems are solved by Runge-Kutta 
integration and results are compared to those obtained by the finite-difference scheme. Agreement is excellent 
in all cases. 

KEY WORDS Gas-liquid Flows Laminar Boundary Layers Heat and Mass Transfer 
Numerical Methods 

1. INTRODUCTION 

Many industrial and physical processes require a phase-changing gas-liquid interface for the 
transport of heat and species from one fluid regime to the other. Among applications related 
to evaporation, condensation, ablation, pyrolysis and combustion are many problems in which 
the underlying motion of the liquid is significant and governed by boundary-layer equations 
similar in form to those which characterize transport in the gas. Despite their obvious importance, 
however, coupled boundary-layer flows comprise a class of problems for which there is a dearth 
of experimental data and theoretical analysis because previous investigators have generally 
focused on either the gas or liquid regimes and have disregarded possible interactions of one 
fluid on the other (e.g. Chow and Chung')). Representative of the available literature on coupled 
gas-liquid flows are the investigations of Lock' and K ~ t a k e , ~  who examined self-similar laminar 
problems in the absence of pressure gradient, of Schroppel and Thiele? who analysed laminar film 
condensation on a solid boundary, and those of Streets and Liu, Katsaros and Businger,6 who in 
simplified analyses considered turbulent transport across an air-water interface. 

Accordingly, we present a numerical scheme for solving the two-dimensional, steady-state 
equations of heat, mass and momentum in a broad class of laminar boundary-layer problems 
with a smooth, phase-changing, density interface. Both fluid regimes are embedded in a single 
marching computation which calculates interfacial values of the velocity, shear stress, temperature 
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and mass-transfer rate implicitly as the solution proceeds downstream in the direction of flow. 
The scheme is an extension of the Box method of Keller and C e b e ~ i , ~  which has been demonstrated 
to be efficient, accurate and versatile, and which has been used to solve a variety of boundary-layer 
problems. * 

Solutions to self-similar and non-similar problems with streamwise pressure-gradient are 
presented herein. Since self-similar laminar flows are governed by ordinary differential equations, 
we also include an algorithm for obtaining similarity solutions by Runge-Kutta integration. 
Some solutions computed by this method are compared to those calculated by the finite-difference 
scheme in order to assess the accuracy of the latter. 

2. BASIC EQUATIONS 

In this section we present the non-dimensional equations governing transport of heat, mass, 
and momentum in laminar gas-liquid flows and discuss the numerical scheme we use to solve 
them. As illustrated in Figure 1, we consider the forced convection of a constant-property binary 
mixture of perfect gases flowing over a single-component liquid. The free-stream velocity, 
temperature, and vapour-concentration in the gaseous regime are denoted by u,, T,, and mvr 
respectively; u -  , and T-  co denote the velocity and temperature in the bulk liquid. (A complete 
nomenclature is given in Appendix I). Transport of liquid vapour can occur by condensation 
or evaporation at the interfacial boundary and streamwise pressure gradients above and below 
the liquid surface may exist. We further assume that the interface remains horizontal (a discussion 
of this assumption is contained in Appendix IT). 

2.1. Non-dimensionalization of the coupled boundary-layer problem 

The boundary-layer equations we wish to solve are contained in Appendix 11. It is convenient, 
although not absolutely necessary, to non-dimensionalize equations (15)-( 17) by introducing a 
transformation employing the stream function. Let $(x, y) be the stream function in physical 

Y 

Figure 1. The coupled gas-liquid problem 
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co-ordinates and f ( 5 ,  s) a non-dimensional stream function in the transformed co-ordinate system 
(5 ,  q). If we use the classical Falkner-Skan transformation 

* l ( X l Y )  = ~J(umvlx)f l ( t9s1)? 

*2(% Y )  = J(.mv2X)f2(5,  121, 

s l = J ( $ ) y l ,  s 2 = J ( U " ) y 2 ,  v2x x = t  

and the definition of the stream function given by 

w 1 , 2  

ax ' 2 u1,2  = -~ u1,2 =- 
a*,,, 
a Y L 2  

the field equations can be written as 

in which g 1  = i l / im and g 2  = i 2 / i -  41 are non-dimensional enthalpies, h = (m, - m,,)/(%, - mVm) is a 
normalized species-concentration, m, = (t/u,)(du,/d() and m2 = (</u- ,)du- ,/dt are the stream- 
wise pressure-gradient parameters above and below the interface, y1 = u-  m,J~,, and Pr and Sc are 
the Prandtl and Schmidt numbers, respectively. The underlined term in equation (lb) represents 
enthalpy transport produced by a species-concentration gradient in the gas. 

In stream-function co-ordinates the interfacial and far-field boundary conditions become 
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The underlined term in equation (2g) represents that part of the surface heat flux which results 
from a vapour-concentration gradient at the interfacial boundary. 

2.2. Numerical solution 

The coupled boundary-layer problem characterized by equations (1) and (2) is parabolic. 
Solutions of these equations can be obtained in a scheme which commences with input profiles 
of field quantities at an initial streamwise station and then marches downstream in the direction 

77 direction of flow 

t Lc 

4 i 
0 

I 

E n - '  E "  

Figure 2. The finite-difference grid for gas-liquid flows 
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of flow. A typical non-uniform grid over which the finite-difference equations of the BOX method 
are applied is illustrated in Figure 2. A solution is assumed to be known at the streamwise 
station denoted by y n - l  and sought at the station 5". 

The algorithm we employ for solving equations (1) and (2) appears in Figure 3 and parallels 
the procedure described by Cebeci and Smith.8 In this algorithm we exploit the fact that scalar 
transport affects the transport of momentum only through the single interfacial boundary 
condition (2e). Consequently, it is possible (and convenient) to solve the momentum equations 
separately from the remaining equations in the system. The momentum equations are linearized 
by Newton's method in order to solve them. Once a solution to the momentum problem has 
been obtained, equation (lc) becomes linear and can be solved directly without recourse to 
linearization. When solutions to both the momentum and mass transport problems have been 
obtained, equations (lb) and (le) become linear and can also be readily solved. 

INPUT DATA 
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REPEAT CALCULATIONS IN THE ABOVE CYCLE IJNTLL A CONVERGENCE 

CRITERION ON THE SURFACE SHEAR STRESS IS SATISFIED; 

THEN PROCEED TO THE NEXT DOWNS'TREAM STATION 

(MARCHING IN THE DIRECTION OF THE FLOW) 

Figure 3. An algorithm for solution of the coupled problem by finite differences 
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The numerical scheme inherent in the Box method has been described e l~ewhere .~-~  In the 
next sections we discuss those extensions to the method which are required for solving the 
gas-liquid boundary-layer problem. 

2.2.1. Solution of the coupled momentum problem. By introducing new dependent variables 
ul(t,ql), vl(<,ql),  u2(5,q2) and v z ( t , q z )  we can rewrite equations (la) and (Id) as a system of 
first-order partial differential equations; these are given by 

f l u l + m l ( l - u t ) = t  
du, m , + 1  --+- 
av1 2 

The interfacial and far-field boundary conditions needed to solve this system are, from (2) 

U l o  = U20’ 

V l o  = Av20, 

f = --[Q+2ti/o]. 2 a f l  

ml + 1 l o  (44 

lim UAt, qz)  = Y1. (4f) 
v 2 - - m  

Referring to the non-uniform rectangular grid illustrated in Figure 2 we let 

p = o  tn=r“- l  + l n ,  n =  1,2 ). . .)  N ,  (54 

ql,=O; q l j = v l j - l + ~ l j ,  j=1 ,2 , . . . , J ,  (5b) 

tlzo=o y/2k=r/2k+i-P2k,  k =  -1 , -2 , . . . , -K (54 

(54  

denote the net spacings, and adopt the customary notation 
5”-112 = L  n 

2 ( t  + Y-’), 
?lj-1,2 = + ( ? I j +  %j-l); v 2 k + 1 1 2  =+(%k+l + r2J (54 
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for points centred between net points in the grid. Furthermore, we approximate the unknowns 
( f ; ,  u;, v;) at (t", ql,) and (f ; ,  u", 0;) at ((9 q2,) by the respective net functions ( f " l , ,  uyJ, uYJ) 
and (f '&,, unZk, v",) in the usual manner, and let 

9;- ' I z  =I 4(9! + 9:- '19 d -  112 = 3(9! + 9;- 1) (50 
for any net function &(a = j ,  k + 1) above or below the interface. 

The centred-difference approximations to (3a), (3b), (3d) and (3e) are simple. However, since 
(3c) and (3f) contain derivatives with respect to variables in two orthogonal directions, the process 
of differencing these equations must be accomplished in two steps. Details of this procedure are 
contained elsewhere'-'' and are omitted here. The finite-difference approximations to equations 
(3) are given by 

in which 

and 

contain elements of the solution at p-'  and where CI, = tn-112/ln, j =  1, 2, ..., 5 and 

The difference approximations to the interfacial and far-field boundary conditions are given by 
k =  -1 , . . . , -K .  

';" = u"z7 (74  

z ) ; ~  = AviOc, (7b) 

(m; + 1 + 4 ~ l , ) ( f ; ~ - A f l ; ~ ) =  - ( id- '+ 1-4~1,)(f;,~-Af",,'), (74 

( 7 4  

u;J = 1, (74 

C K  = Y1. (7f) 

(m; + 1 +4a,)f;,= -2(h;l"+h;l"-')-(m",-'+ 1 -4a,)f;i1, 

The far-field boundary conditions (7e) and (7f) are enforced at the respective ordinates denoted by 
and q2-+ which are assumed to be sufficiently large that the asymptotic limits implied by (2J) and 

(2k) are satisfied. 
Equations (6) and (7) comprise a non-linear system of 35 + 3K + 6 difference equations at 5" in 

the rectangular grid depicted in Figure 2; a solution is, ofcourse, known at 4"- '. Newton's method 
is employed to linearize this system in order to solve it. We adopt the notation of Keller" and 
introduce the iterates ( f ; ; ,  u;:, v;,J and ( f2kc ,  u:,', 02,') of the unknowns for the ith iteration 
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( i  = 0,1,. . .) at 5". If 
f;;i + 1 =f;; + Sfl j, u;;i + 1 = un.2 I j  + hj, 

I j  1 - - un.i l J + d u l j ,  j=O, l , . . . ,  J ,  

u?:+' = + Suzk,  k = 0, - 1,. . . , - K ,  (8b) 

(84  
and 

f ? i + l  = f n i  2 + s f 2 , ,  U,,i+, = u?; + SUZk' k 

then by substituting (8) into (6) and (7) and retaining terms which are first-order in the &iterates we 
obtain the following set of linearized matrix equations: 

B l J 4 - l  + AiJ6iJ = ri,, 

B*jSlj-l + Alj4,  + cij4j+l = rlj? 1 G j G J - 1 ,  

Bin4, + A1nS1o + ='lo, 

' 2 0 6 2 -  + '20620 + B2061, z= '20, 

A2_,%, + B2-KS2-K+1 = r 2 4  

(9) 

C Z ~ S ~ , -  + A2,6,, + B2,S2,+ = r2k, - K + 1 < k < - 1, 

in which S,, = [S f lJ ,  Su,,, SuljlT and S,, = [S f2* ,  6uzk, Sv2,lT are vectors of the unknowns at points 
(n,j) and (n, k), respectively, for the ( i  + 1)th iteration, r l j  and rzk are vectors containing difference 
approximations of field variables at 5" and Y-'  and A,,, Blj, Clj, A2k, BZk, and C,, are 3 x 3 
matrices whose elements are defined by Klotz and Street.' 

The unique nature of the interfacial coupling and the precise structure of the difference equations 
become more apparent if we rewrite the system of matrix equations (3) in block tridiagonal form, 

where 

and 
A2- g 

C 2 K + l  

S =  

B2- g 

A 2 - K + l  B 2 - K + l  

P =  

PS= r, 

r =  

Bb- I 
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As is evident, the interfacial boundary conditions are embedded in the structure of the coefficient 
matrix P. Consequently, the simplicity and efficiency inherent in the box method is maintained 
and, since the difference equations at each streamwise station are implicit, the quadratic 
convergence characteristic of Newton's method is preserved. 

In order to solve (10) we adopt the block elimination procedure described by Isaacson and 
Keller12 and Keller.' Details of the method, which has been applied to boundary-layer problems 
over solid surfaces, are contained in Reference 9 and are not repeated here. 

2.2.2. Solution of the coupled entkalpy and mass transport problems. The differential equations 
and boundary conditions characterizing the transport of scalar quantities can be readily solved 
without recourse to linearization using Newton's method. The systems of differenced scalar 
equations also possess a structure less complex than the corresponding system for momentum. 

To solve the enthalpy problem we introduce new dependent variables G1(& q l )  and G2(5, q 2 )  and 
rewrite equations (1 b) and (le) as a system of first-order partial differential equations, namely 

in which H = 8h/ay,, D1 = (d, - l)(Sc-' - Pr;')(mv0 - mvm) and D2 = H/[l+ (d, - 1)mV1-'. 
From (2) the interfacial and far-field boundary conditions for the enthalpy problem become 

(W 91, - c1 + (dl - l)mvold2(Y2920 + d3) = 0, 

Equations (1 1) and (12) are linear in the dependent variables when solutions to the momentum and 
mass transport problems have been computed. 

If Selj = [g; j, G;,IT and Sezk = [ g $ k ,  G$k]T are vectors of the unknowns at the vertical grid points 
(n,j) and (n, k),  respectively, the system of difference equations governing enthalpy transport can be 
written as 
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in which rel, and rezk are vectors containing finite-difference approximations of variables at (” and 
and A,,,, Bel,, Gel,, AeZk, BeZk and CeZk are 2 x 2 matrices whose elements are defined by 

Klotz and Street. l1  To solve equations (1 3 )  we rewrite them in block tridiagonal form and adopt 
the elimination method described in Section 2.2.1. The procedure is straightforward and we 
therefore omit the details of it. 

Equation (1 c), subject to boundary conditions given by 

h, = 1, 
lim h = 0, 

can be readily solved using the same elimination scheme. Accomplishing this task only requires 
minor modification of the block tridiagonal matrix which corresponds to equations (13). 

?I -w 

2.3. The generation of initial profiles and convergence criteria for the coupled gas-liquid problem 

Any one of a variety of methods can be employed to provide initial distributions of dependent 
variables at the first streamwise station in the flow field. We may, for example, use experimental 
data to start calculations, but if data is not available it is possible to initialize computations by 
calculating a self-similar solution to equations (1) and (2). In the latter case we locate the first 
station at t = 0 and let 

be the initial approximation to the stream functions above and below the interfacial boundary, 
where 

By using this approximation we are able to start calculations without specifying initial distri- 
butions of scalar variables. Profiles of f ; ,  , f i ,  f ;  and f i  across the boundary layers are 
needed, however, and are easily obtained by differentiating the functions in (14), which satisfy 
the boundary conditions 

f ; ,= I ,  .f;,=o, 
.f ;- = Y 1 ,  f ;- = 0, 

f 1, =. f2 ,  = 0, .f ,lo =.f Lo> , f L  = A f  ;N 

Calculations at each streamwise station are terminated only when a convergence criterion on the 
interfacial shear stress is satisfied. This criterion is given by iGvl,/  < E ,  where E - 0(10-’) is a 
prescribed tolerance parameter. Additional criteria on the surface drift, interfacial temperature, 
and mass transfer rate are usually not warranted. 

Self-similar problems which use equations (14) as an initial approximation generally require no 
more than 10-20 iterations before a converged solution is obtained, even for flows with strong 
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surface evaporation or condensation. In non-similar problems, which we can solve by marching 
downstream from the self-similar solution at 5 = 0, if the horizontal grid spacing is constant (or 
nearly so), the number of iterations required for convergence at a particular station usually 
decreases as 5 increases, unless an adverse pressure gradient is present and computations are 
being performed near a separation point, or the grid spacing is so large that the solution changes 
markedly between adjacent stations. In either case, in order to compute an accurate solution 
we must refine the horizontal grid and repeat all calculations. 

In many boundary-layer flows streamlines are essentially parallel to lines of constant q and 
boundary-layer growth in physical co-ordinates is automatically accounted for in the transformed 
(5, q )  co-ordinate system. However, in some problems (i.e. those with pressure gradient), the 
vertical grid at downstream stations must be expanded in one or the other fluid regime to ensure 
that the boundary layers are contained entirely within the computational domain. Our finite- 
difference algorithm requires that I u , , ~  < I ,  and luZ-,I < /?., at each streamwise station in the flow 
field, where A l  and ,I, are tolerance parameters, 0(10-3) and O( respectively. If either of these 
criteria is not satisfied at any station, additional points are added to the vertical grid in one or the 
other fluid regime and the iteration process described above repeated until the convergence 
criterion on /Gvl , , /  is also satisfied. The details of this procedure have been described by Cebeci and 
Bradshaw.’ 

3. RESULTS 

In Appendix 111 we compare self-similar solutions calculated by the scheme described above to 
those computed by Runge-Kutta integration. In this section we present the results of additional 
finite-difference computations. Unlike the results presented in Appendix 111, however, those 
which we discuss here were obtained by retaining the underlined mass transport terms in equations 
(lb) and (2g). 

In all our linite-difference calculations we used the particular computational grid suggested 
by Cebeci and Bradshaw.’ We specified horizontal grid spacing arbitrarily, defined vertical grid 
point locations by 

in the gas and 

in the liquid, and calculated the number of node points above and below the interfacial boundary 
from expressions given, respectively, by, 

and 

where S, and S, are constant ratios of adjacent grid intervals. In our computations 
1.02 < S, d 1.05, 1.05 d S, < 1.1, 0.05 < q,,  < 0.10, - 0.10 d q 2 ,  d - 0 2 ,  8 < qa < 11 and 
- 24 d q -  d - 128. Actual values used in a particular simulation depended on the magnitude 
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of the pressure-gradient parameters m, and m,, mean current to free-stream velocity ratio y , ,  
and surface mass transfer rate hi. We also imposed a maximum value of 5 on p z k  below the 
interfacial boundary because node spacings in the subsurface regime may become large with the 
magnitudes of S,,  y2, ,  and y - m  cited above. 

Self-similar solutions of equations (1) and (2) exist if all dependent variables are independent of 
the streamwise co-ordinate c, if m,, yl ,  and y 2  are constants, and if either (a) m2 = m ,  when y1 + 0 
or (b) y ,  = 0. We computed such solutions to a number of problems involving the air-water system 
under different bulk fluid conditions and plotted calculated values of the shear stress fin = 
d2,fl/dy:lo, heat transfer coefficient - S;, = (T ,  - T,)-'dT,/dy, l o ,  and mass transfer rate M in 
Figures 447. In each simulation T,  = 100 "C. All properties were obtained from Reference 14 and 
evaluated at the corresponding far-field temperature. Of particular importance to this discussion 
are effects of mild pressure gradient and a mean current in the liquid on interfacial parameters 
under conditions of both condensation (hi < 0) and evaporation (hi > 0). 

Figure 4 indicates that a favourable pressure gradient (m,  > 0) increases jyo, - 6'lo and hi: from 
the values one obtains when no pressure gradient exists; an unfavourable pressure gradient 
(m,  < 0) clearly has an opposite effect. The heat transfer coefficient - W,, is obviously affected 
by pressure gradient to a lesser extent than is the interfacial shear stress. This result is not 
surprising because there is no term in equation (1 b) which is analogous to the pressure-gradient 
term in (la). 

Figure 5 illustrates effects of a liquid current on several interfacial parameters in the absence of 
pressure gradient and free-stream humidity. In these cases the liquid surface is evaporating. An 

.05 { 
I 

I 1 I I I 
0; 20 40 60 80 100 

T-, ('C) 

0.5 0.4 t 
0.1 1 
" 
0 20 40 60 80 100 

T-, ("C) 

Figure 4. Effect of mild pressure-gradient on interfacial parameters in laminar, gas-liquid flows (air-water system; 
T,  = 100 "C, y ,  =my_ = 0). In this Figure J y o ,  - O ; ,  and hi are the interfacial shear stress, heat transfer coefficient and mass 

transfer rate, respectively, and m, is the pressure-gradient parameter in the gaseous regime 
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Figure 5. Effect of liquid current on interfacial parameters in laminar, gas-liquid flows (air-water system; T ,  = 100°C, 
rn, = tn., = 0). In this Figure y t  = u-  ,/urn; all remaining symbols are the same as in Figure 4 

increasing current decreases the shear stress but increases the heat transfer coefficient and surface 
mass transfer rate at all temperatures. A mean current beneath the interfacial boundary 
dramatically thins the boundary layers in the subsurface regime. Consequently, a higher surface 
temperature results with a subsequent increase in the mass transfer rate. 

Figure 6 illustrates effects of a variable free-stream concentration of water vapour on interfacial 
parameters in the absence of pressure gradient and mean current. An increase in mVm results in 
an increase in the surface shear stress and heat transfer coefficients, but a decrease in the mass 
transfer rate. When condensation occurs, water vapour is transported through the boundary 
layer from the free stream to the surface where it undergoes phase change and releases its latent 
heat. Since latent heat is a large quantity in the energy budget at the interface, a higher surface 
temperature results when condensing fluid is deposited there. As the condensation rate increases, 
the boundary layers above the interface become progressively thinner and the skin friction and 
heat transfer coefficients increase further. 

Figure 7 depicts the combined effects of condensation and a mild favorable pressure gradient 
on f y o ,  -310 and hi. Not surprisingly, the effect of an increasing rate of condensation is 
accentuated by a favourable pressure gradient and the surface shear stress and heat transfer 
coefficient increase for all temperatures when m, > 0. 

These results correct and extend those reported by K ~ t a k e , ~  who considered self-similar gas- 
liquid problems in the absence of pressure gradient and mean current. In contrast to Kotake's 
erroneous results, our calculations indicate that when the mass transfer rate is sufficiently large, 
the surface temperature may be markedly depressed below the fluid temperatures far above and 
below the interface (Table I). This result is not surprising when one recognizes that hi is primarily 
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Figure 6. Effect of free-stream vapour concentration on interfacial parameters in laminar gas-liquid flows (air-water 
system; T,  = 100 "C, m, = y I  = 0). In this Figure m,_ is the free-stream vapour concentration in the gas. All remaining 

symbols are the same as in Figure 4 
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Figure 7. Combined effects of condensation and mild favourable pressure-gradient on interfacial parameters in laminar, 
gas-liquid flows (air-water system; T,  = 100 "C, y1 = 0). All symbols are the same as in Figures 4-6 
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Table I. Surface temperatures for several self-similar, laminar 
flows (air-water system; y ,  = m, = 0) 

Tm(W T-,("C) m,_ hi T,("C) 

100 20 0 0013 20.1 
0.2 - 0088 28.4 
0.4 - 0.288 38.6 

50 0 0054 46.5 
80 0 0.1 so 68.2 

0.2 0.147 75.4 
20 20 0 0.009 19.2 

controlled by the bulk liquid temperature and free-stream vapour concentration, and that 
evaporating fluid absorbs its latent heat when it undergoes phase change. 

Finally, we present the results of two non-similar boundary-layer calculations in which surface 
evaporation occurs. One simulation is of a linearly accelerating flow in which u, = 1 + [; the other 
is of a linearly retarded (Howarth) flow in which u, = 1 - 5. In each T,  = 100 "C, T- = 80 "C, 
mva = 0 and y1 = 0. Both simulations were started from the same self-similar solution at t = 0 and 
computed on progressively finer horizontal and vertical grids until accurate solutions were 
obtained. Horizontal grid spacing decreased with distance from ( = 0 in the retarded flow, but 
increased with distance in the flow with favorable pressure gradient. The streamwise grid point 
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Re, XIO-4 

Figure 8. Interfacial parameters in an accelerating laminar flow ( u ,  = 1 + [, T,  = 100 "C, T-  io = 80 "C, mvm = y I  = 0). In 
this Figure df,/aqr lo ,  a2f,/aq;lo and 6f denote the velocity, shear stress and mass transfer rate at the interfacial boundary 
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Table 11. Computational parameters and horizontal grid point locations for 
two non-similar flows (air-water system)* 

Decelerating flow: u, = 1 - 5 Accelerating flow: u, = 1 + 4 
11, = 0.1, q z _ l  = -0.2 11, = 0.1, q,-, = -0.2 
1, = 11, q-m = -96 q m  = 10, q - m  = -90 

s, = 1.02, S, = 1.05 s, = 1.02, S, = 1.05 

5 Station Station 4 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

0~0000 
0,0050 
0~0100 
0.0150 
0.0200 
0.0250 
0.0300 
0.0350 
0.0400 
OQ450 
0.0500 
0.0550 
0.0600 
0.0650 
0.0700 
0.0740 
0.0780 
00810 
0.0840 
0.0860 
0.0880 
00900 
00910 
0.0920 
00930 
0.0935 
0.0940 
0.0942 
0.0944 
0.0946 
0.0947 
0.0948 
0.0949 
0.0950 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

0.00 
0.0 1 
0.02 
0.03 
0.04 
005 
0.06 
0.07 
0.08 
0.09 
0.10 
0.12 
0.14 
0.16 
0.18 
0.20 
0.22 
0.25 
0.28 
0.3 1 
0.34 
0.38 
0.42 
0.46 
0.50 
0.55 

*In each T,  = 100 "C, T -  = 80 "C, mvm = 0 and y ,  = 0. 

locations and values of S , ,  q I 1 ,  qm,  S,,  q 2 - ,  and q - ,  which are recorded in Table IT resulted in 
surface parameters everywhere accurate to three significant figures. 

The interfacial velocity, shear stress and surface mass transfer rate in these flows are plotted as 
functions of Reynolds number in Figures 8 and 9. Calculations in the accelerating flow were 
arbitrarily terminated at 5 = 0.55 ( R e ,  N 3.7 x lo4). In the retarded flow boundary-layer separ- 
ation occurred at ( N 0095 (Re 21 3.7 x lo3) and calculations were stopped there without marching 
further downstream into the region of flow reversal. 
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0.3 I I I I I I I 0.03 

- 0.02 

M 0.1 - - 0.01 

I I I I 0 
4.0 

0 
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 

0.3 I I I I I I I I I 0.03 

I I I I 0 
4.0 

O L  
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 

Re, XIO-3 

Figure 9. Interfacial parameters in a decelerating laminar flow (u, = 1 - r, T,  = 100 "C, T - ,  = 80 "C, mvm = y1 = 0). All 
symbols are the same as in Figure 8 

Howarthis provided the first analytical solution to a linearly retarded laminar flow near 
separation and subsequent investigations have indicated that separation in this flow occurs at 
( N 0.12 on a flat p1ate.l6 In our simulation a finite, non-zero interfacial velocity, as well as surface 
evaporation, effectively reduce the shear stress and result in a separation point upstream of the 
value one obtains on a flat plate in the absence of surface mass transfer. 

4. CONCLUSION 

We have described a powerful and efficient numerical scheme for solving a broad class of 
boundary-layer problems involving laminar gas-liquid flow. We have presented the results of 
several computations and have examined effects of mild pressure gradient, a liquid current, and 
free-stream vapour concentration on parameters at the gas-liquid interface. In Appendix I11 we 
compare finite-difference computations of self-similar flows to solutions obtained by an algorithm 
employing Runge-Kutta integration. Agreement is excellent in all cases. 

The finite-difference scheme which we have developed can be a useful computational tool for 
design engineers who wish to solve a variety of gas-liquid boundary-layer problems. Some 
applications were suggested in the Introduction. 
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APPENDIX I: NOMENCLATURE 

A, B, C coefficient matrices 
Cl specific heat of liquid 
CP constant pressure specific heat 
D, (d, - I)(&-' - Pr;')(my0 - mVm) 

d2 CpgIC, 
d3 L"IL 
f dimensionless stream function 
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Froude number, &/gx 

dimensionless enthalpy 

dimensionless spacies concentration (mv - rnvm)/(m,, - mVm) 
specific enthalpy 
thermal conductivity 
horizontal grid interval 
latent heat of vaporization 
surface mass transfer rate 
pressure-gradient parameter (gas) 
pressure-gradient parameter (liquid) 
mass fraction of vapour in the binary gas mixture 
vapour flux 
block tridiagonal matrix 
pressure; vertical grid spacing (Sections 2.2.1,3) 
Prandtl number 
net function 
residual function 
residual vector 
molecular gas constant of liquid vapour 
Reynolds number based on steamwise distance 
ratio of adjacent grid intervals in the vertical direction 
surface displacement 
Schmidt number 
temperature 
liquid boiling temperature at the ambient pressure of the gas-liquid system 
reference temperature (0 "C) 
horizontal velocity (Section 2.1, Appendix 11); a f/aq (Sections 2.2.1-2.2.2) 
free-stream velocity distribution 
bulk liquid velocity distribution 
vertical velocity (Section 2.1, Appendix 11); a2f /a$ (Section 2.2.1, Appendix 111) 
horizontal and vertical co-ordinates, respectively 

ag /ar  

ahlar 

Greek symbols 

en i""- 1'2/ln 

6 vector of unknowns 
Sf,  6u, 6v iterates of differenced field variables (momentum problem) 
Y mass diffusion coefficient 

Y 2  i- Jim 
r thermal diffussion coefficient 
& convergence parameter 
8 non-dimensional temperature 
1" tolerance parameter 

A density-viscosity ratio, 

i"2 yl Falkner-Skan co-ordinates 

Y1 u-  m/u* 

J(E9 
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P 

P 
v 

Ic, 

Subscripts 

132 
03, - 03 
e 
8 
j ,  k 
0 
V 

dynamic viscosity 
kinematic viscosity 
density 
stream function 

gas, liquid 
free stream and bulk liquid, respectively 
enthalpy 

indices designating vertical grid point locations ( j  = 0,1,. . . , J ;  k = 0, - 1,. . . , - K )  
interface 
vapour 

(dry) gas 

Superscripts 
I ordinary derivative 

index designating horizontal grid point locations n 

APPENDIX 11: THE MEAN-TRANSPORT EQUATIONS AND BOUNDARY 
CONDITIONS FOR COUPLED BOUNDARY-LAYER PROBLEMS 

If the subscripts 1 and 2 refer, respectively, to the regimes above and below the interface, the 
differential equations governing the mean flow at steady state are given by 

(15i) 
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The relevant boundary conditions at the gas-liquid interface (denoted by the subscript 0) are 

--P1,+2CLl-- = - p 2 , + 2 / 4 -  , 
ay1 I 0 a Y 2  av2 I 0 

U l 0  = u2, 55 u0, 

Far-field boundary conditions are given by 

and 
ul+u,,  i ,+ i , ,  mv+mvm as y l+co  

u2+u-,, t 2 - + 1 - ,  as y2-+ - co. . .  

Equations (16a)-( 16d) are continuity relations at the interface for the normal stress, horizontal 
velocity, shear stress, and temperature, respectively. Equations (16e) and (16f) are mass- 
conservation relations, (16g) is an expression for the conservation of energy and (16h) is the 
Clausius-Clapeyron equation which relates the interfacial temperature and vapour concentration 
under conditions of thermodynamic equilibrium. Equations (16f) and (16g) were derived by 
applying the conservation principle to a control volume centred at the interface, by assuming 
that liquid vapour is the only transferred substance between the liquid and the binary gas, and 
by neglecting radiative heat transfer. 

The specific enthalpies i ,  and i 2  are defined by 

i ,  = m,i, + mviv, 
i, = C,T2 - L,, 

where i, = CpE(Tl - T,) and i, = Cpy(Tl - T,) are the corresponding component enthalpies, rn, 
and m, are the mass fractions of dry gas and liquid vapour, respectively, and T, is a reference 
temperature (T, = 0 "C in this analysis). The mass transport terms in (15d) and (16g) result from 
the heat flux, which can be written in the form 

for a binary mixture, where k is the conductivity and r the thermal diffusion coefficient. 
The pressure gradients in equations (15b) and (15g) are 
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and 
a P 2  dP-, du- 
ax dx - P 2 U -  a3 -&-' 

Because these gradients are determined from the far-field inviscid flow in each fluid regime, we 
need not compute the pressure field explicitly and we can disregard the normal stress boundary 
condition (1 6a) in solving the system (1 5) and (16). 

Although pressure arises in no other context different pressure gradients above and below the 
interface preclude the interfacial boundary from remaining horizontal. Equations (15c) and (15h) 
imply that 

dP-a3 dPZo ds 
+ PZSZ' -- -- 

dx dx 
and 

where s(x) is the vertical surface displacement from the horizontal axis. By subtracting (19b) 
from (19a) and using equations (16a) and (18), we obtain an expression for the surface tilt given 
by 

ds P1 -= Fr, -ml - yfm,  
dx P2 

in which 

Only for the restricted class of self-similar laminar problems without pressure gradient is ds/dx = 0; 
such problems were investigated by Lock' and K ~ t a k e . ~  

In laminar gas-liquid flows ds/dx is typical 0(10-4) or smaller and its effect can be neglected. 
Incorporating surface tilt in our analysis would require that we modify the field equations in 
order to account for boundary-layer curvature (since, in general, d2s/dxZ # 0) and gravitational 
acceleration. We would then use equation (20) in a particular problem to determine the dis- 
placement s(x) and to align the x-axis of the co-ordinate system with the predominant flow 
direction; u and v would correspond to velocity components parallel and perpendicular to the 
interfacial boundary, respectively. 

APPENDIX 111: THE SOLUTION O F  SELF-SIMILAR LAMINAR FLOWS AT A SMOOTH, 
PHASE-CHANGING INTERFACE BY RUNGE-KUTTA INTEGRATION 

Self-similar gas-liquid problems can be solved by Runge-Kutta integration and solutions so 
obtained then compared to those computed by the finite-difference algorithm described in Section 
2. This comparison allows us to assess the accuracy of the latter method. 

Klotz and Street" provide details of the Runge-Kutta algorithm which we used to compute 
solutions. In it the momentum equations above and below the interface are solved using the 
variational scheme described by Cebeci and Bradshawg and Keller." The procedure involves 
iterating by Newton's method on estimates of the surface velocity and shear stress in order to 
satisfy all far-field boundary conditions. Since the momentum problem is coupled to the heat 
and mass transfer problems, f l o  is calculated by solving the latter in each iteration. 
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To compute the solutions discussed in this appendix we neglected the underlined terms in 
equations (lb) and (2g) which represent transport of enthalpy as the result of a species-concen- 
tration gradient above the gas-liquid interface. The equations governing scalar transport in 
self-similar flows can then be readily solved by quadrature3 and improved estimates of To, mvo 
and f l o  obtained directly from the interfacial boundary conditions. 

,Gas-liquid properties, the locations of qm and q P r n  and initial estimates of fro, f;o, gio, ho 
and To must be provided to start Runge-Kutta calculations. Solution convergence in our 
algorithm is not quadratic, which is characteristic of Newton’s method, because gio, gl0, ho, 
To and f l o  are determined by successive approximation. 

Table I11 contains computed values of the interfacial velocity fro,. shear stress f:o, surface 
temperature To and mass-transfer rate hi in several problems involving the air-water system. 
In all simulations gas-liquid properties were evaluated at the corresponding far-field temperature. 

We used a fourth-order Runge-Kutta integrator to calculate the solutions presented here. This 
scheme automatically adjusted step size to control errors and is more accurate than the finite- 
difference method. It generally suffers, however, from the necessity of specifying initial values of 
all surface parameters and poor estimates of these may adversely affect the rate of solution 
convergence. 

Convergence may also be influenced by the choice of qc0 or qPrn in a particular problem; in 
fact, if either of these parameters is too large, solutions computed by Runge-Kutta integration 
may diverge. Convergent solutions in which If;, I and 1 f g - J  are small and have no effect on the 
magnitudes of computed interfacial parameters were obtained using the values of 0, and q - m  
recorded in Table 111. In all cases I f ; , /  6 

The computational grid which we use with the finite-difference method was described in Section 
3 and in computing solutions with this scheme we assumed that S ,  = 1.02, vl, = 0.1, S ,  = 1-05 and 
02-, - - - 0.05. This algorithm is not nearly as sensitive as is the Runge-Kutta method to the choice 
of qm and y~ - rn. Solutions calculated using the values of qrn and q-  contained in Table I11 resulted 
in /ul,j d in all cases. Differences in interfacial parameters computed by 
each scheme and listed in Table I11 are limited to one or two digits in the last significant figure. 

and / f : - m /  6 lo-’. 

and \ u 2 - , /  6 
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